4.8 Article

Oligomodal metamaterials with multifunctional mechanics

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2018610118

关键词

multifunctional; metamaterial; viscoelasticity; combinatorial

资金

  1. European Research Council [ERCStGCoulais852587Extr3Me]

向作者/读者索取更多资源

This research introduces a new class of oligomodal metamaterials that can selectively control multiple properties under uniaxial compression. By introducing various families of metamaterials, the multifunctional nature and flexibility of this class of materials were confirmed.
Mechanical metamaterials are artificial composites that exhibit a wide range of advanced functionalities such as negative Poisson's ratio, shape shifting, topological protection, multistability, extreme strength-to-density ratio, and enhanced energy dissipation. In particular, flexible metamaterials often harness zeroenergy deformation modes. To date, such flexible metamaterials have a single property, for example, a single shape change, or are pluripotent, that is, they can have many different responses, but typically require complex actuation protocols. Here, we introduce a class of oligomodal metamaterials that encode a few distinct properties that can be selectively controlled under uniaxial compression. To demonstrate this concept, we introduce a combinatorial design space containing various families of metamaterials. These families include monomodal (i.e., with a single zero-energy deformation mode); oligomodal (i.e., with a constant number of zero-energy deformation modes); and plurimodal (i.e., with many zero-energy deformation modes), whose number increases with system size. We then confirm the multifunctional nature of oligomodal metamaterials using both boundary textures and viscoelasticity. In particular, we realize a metamaterial that has a negative (positive) Poisson's ratio for low (high) compression rate over a finite range of strains. The ability of our oligomodal metamaterials to host multiple mechanical responses within a single structure paves the way toward multifunctional materials and devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据