4.6 Article

Semi-field assessment of the Gravid Aedes Trap (GAT) with the aim of controlling Aedes (Stegomyia) aegypti populations

期刊

PLOS ONE
卷 16, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0250893

关键词

-

资金

  1. CNPq [312335/2018-0, 440358/2016-7]
  2. CAPES [88887.467092/2019-00, 88881.130779/2016-01]
  3. DECIT/SCTIE
  4. Pro-Reitoria de Pesquisa (PRPq) da Universidade Federal de Minas Gerais

向作者/读者索取更多资源

The study found that the Gravid Aedes Trap (GAT) is effective in capturing adult female Ae. aegypti in simulated outdoor environments, with similar results to the BG-Sentinel (BGS) trap. It suggests that GAT could be a promising candidate for mass-trapping intervention in urban settings, but source reduction intervention should be conducted prior to deployment.
The mosquito Aedes aegypti is the main vector of arboviroses and current approaches to control this vector are not sufficiently effective. Adult traps, such as the BG-Sentinel (BGS), have been successfully used for mosquito surveillance and can also suppress vector populations. A new passive trap for gravid Ae. aegypti (Gravid Aedes Trap-GAT) has been shown efficient for Aedes collection and suppress Ae. albopictus populations using mass trapping techniques. Here the GAT was evaluated for the first time as a new tool to control Ae. aegypti in semi-field conditions using simulated outdoor environments (SOE). Two identical large screened chambers inside of a SOE containing different numbers and sizes of artificial breeding sites were used to assess the trapping efficiency of the GAT. One hundred mosquitoes were released into the chambers, and recapture rates evaluated after 48h. The parity status of the captured mosquitoes was also recorded. The number of eggs laid, and breeding productivity were also monitored when using different numbers and sizes of breeding sites. The BGS trap was used here as a control (gold standard) trap to compare capture rates to those of the GAT. The GAT recaptured between 50-65% of the mosquitoes independent of the number and sizes of the breeding sites in the SOEs, whereas the BGS recaptured 60-82% of the females. Both traps showed similar results regarding to the parity status of recaptured mosquitoes. Our results confirmed the effectiveness of GAT for the capture of adult female Ae. aegypti in simulated field environments. The BGS trap recaptured gravid Ae. aegypti before egg-laying in different sizes and number of breading sites, whereas the oviposition activity occurred prior to recapture mosquitoes in the GAT. Based on the results, we believe that GAT is a promising candidate for mass-trapping intervention in urban settings, but a source reduction intervention should be made prior trap deployment. Therefore, we suggest future field studies to confirm the use of GAT as a complementary tool in vector control activities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据