4.6 Article

Random forest model for feature-based Alzheimer's disease conversion prediction from early mild cognitive impairment subjects

期刊

PLOS ONE
卷 16, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0244773

关键词

-

向作者/读者索取更多资源

The study successfully utilized a balanced random forest model to predict the conversion of MCI patients to AD with high accuracy (93.6%), providing a valuable tool for early diagnosis and candidate selection in clinical trials.
Alzheimer's Disease (AD) conversion prediction from the mild cognitive impairment (MCI) stage has been a difficult challenge. This study focuses on providing an individualized MCI to AD conversion prediction using a balanced random forest model that leverages clinical data. In order to do this, 383 Early Mild Cognitive Impairment (EMCI) patients were gathered from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Of these patients, 49 would eventually convert to AD (EMCI_C), whereas the remaining 334 did not convert (EMCI_NC). All of these patients were split randomly into training and testing data sets with 95 patients reserved for testing. Nine clinical features were selected, comprised of a mix of demographic, brain volume, and cognitive testing variables. Oversampling was then performed in order to balance the initially imbalanced classes prior to training the model with 1000 estimators. Our results showed that a random forest model was effective (93.6% accuracy) at predicting the conversion of EMCI patients to AD based on these clinical features. Additionally, we focus on explainability by assessing the importance of each clinical feature. Our model could impact the clinical environment as a tool to predict the conversion to AD from a prodromal stage or to identify ideal candidates for clinical trials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据