4.6 Article

Identification and selection of optimal reference genes for qPCR-based gene expression analysis in Fucus distichus under various abiotic stresses

期刊

PLOS ONE
卷 16, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0233249

关键词

-

资金

  1. Department of Cell, Molecular and Developmental Biology
  2. College of Life Sciences
  3. U.S. Department of Energy Office of Science, Office of Biological and Environmental Research program [DE-FC02-02ER63421]
  4. US Department of Energy (Biological and Environmental Research (BER), the Biological Systems Science Division (BSSD))

向作者/读者索取更多资源

This study identified nine reference genes for the brown alga Fucus distichus and tested their suitability across different abiotic stress conditions. The majority of the tested genes were found to be favorable as reference genes, but it was recommended to choose normalization genes based on specific conditions.
Quantitative gene expression analysis is an important tool in the scientist's belt. The identification of evenly expressed reference genes is necessary for accurate quantitative gene expression analysis, whether by traditional RT-PCR (reverse-transcription polymerase chain reaction) or by qRT-PCR (quantitative real-time PCR; qPCR). In the Stramenopiles (the major line of eukaryotes that includes brown algae) there is a noted lack of known reference genes for such studies, largely due to the absence of available molecular tools. Here we present a set of nine reference genes (Elongation Factor 1 alpha (EF1A), Elongation Factor 2 alpha (EF2A), Elongation Factor 1 beta (EF1B), 14-3-3 Protein, Ubiquitin Conjugating Enzyme (UBCE2), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), Actin Related Protein Complex (ARP2/3), Ribosomal Protein (40s; S23), and Actin) for the brown alga Fucus distichus. These reference genes were tested on adult sporophytes across six abiotic stress conditions (desiccation, light and temperature modification, hormone addition, pollutant exposure, nutrient addition, and wounding). Suitability of these genes as reference genes was quantitatively evaluated across conditions using standard methods and the majority of the tested genes were evaluated favorably. However, we show that normalization genes should be chosen on a condition-by-condition basis. We provide a recommendation that at least two reference genes be used per experiment, a list of recommended pairs for the conditions tested here, and a procedure for identifying a suitable set for an experimenter's unique design. With the recent expansion of interest in brown algal biology and accompanied molecular tools development, the variety of experimental conditions tested here makes this study a valuable resource for future work in basic biology and understanding stress responses in the brown algal lineage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据