4.6 Article

Risk assessment for airborne disease transmission by poly-pathogen aerosols

期刊

PLOS ONE
卷 16, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0248004

关键词

-

资金

  1. BMBF as part of the B-FAST (Bundesweites Netzwerk Ange-wandte Surveillance und Teststrategie) project within the NUM (Netzwerk Universitatsmedizin) [01KX2021]
  2. Max Planck Society

向作者/读者索取更多资源

In cases of airborne diseases, pathogens are transmitted through respiratory tract fluid droplets in indoor environments, typically modeled using the Wells-Riley model. However, the presence of poly-pathogen aerosols can break the mono-pathogen assumption, leading to a significant overestimation of infection risk. This study introduces a generalized model for poly-pathogen aerosols within the Wells-Riley framework, offering a more accurate computational risk assessment method.
In the case of airborne diseases, pathogen copies are transmitted by droplets of respiratory tract fluid that are exhaled by the infectious that stay suspended in the air for some time and, after partial or full drying, inhaled as aerosols by the susceptible. The risk of infection in indoor environments is typically modelled using the Wells-Riley model or a Wells-Riley-like formulation, usually assuming the pathogen dose follows a Poisson distribution (mono-pathogen assumption). Aerosols that hold more than one pathogen copy, i.e. poly-pathogen aerosols, break this assumption even if the aerosol dose itself follows a Poisson distribution. For the largest aerosols where the number of pathogen in each aerosol can sometimes be several hundred or several thousand, the effect is non-negligible, especially in diseases where the risk of infection per pathogen is high. Here we report on a generalization of the Wells-Riley model and dose-response models for poly-pathogen aerosols by separately modeling each number of pathogen copies per aerosol, while the aerosol dose itself follows a Poisson distribution. This results in a model for computational risk assessment suitable for mono-/poly-pathogen aerosols. We show that the mono-pathogen assumption significantly overestimates the risk of infection for high pathogen concentrations in the respiratory tract fluid. The model also includes the aerosol removal due to filtering by the individuals which becomes significant for poorly ventilated environments with a high density of individuals, and systematically includes the effects of facemasks in the infectious aerosol source and sink terms and dose calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据