4.6 Article

Dynamics of primary productivity in relation to submerged vegetation of a shallow, eutrophic lagoon: A field and mesocosm study

期刊

PLOS ONE
卷 16, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0247696

关键词

-

资金

  1. Federal Ministry of Education and Research [03F0665A]

向作者/读者索取更多资源

Aquatic ecosystems are facing continuous pressure from recent or historical events. Increased nutrient supply leads to the replacement of submerged macrophytes by phytoplankton, while reducing nutrients does not restore habitats for submerged macrophytes. Constant net-heterotrophy may prevent the re-establishment of macrophytes and favor phytoplankton growth.
Aquatic ecosystems nowadays are under constant pressure, either from recent or historical events. In most systems with increased nutrient supply, submerged macrophytes got replaced by another stable state, dominated by phytoplankton as main primary producer. Yet, reducing the nutrient supply did not yield the aimed goal of restored habitats for submerged macrophytes in systems worldwide. The question arises, why submerged macrophytes do not re-colonize, and if they are actually competitive. Therefore, primary production assays were conducted in ex-situ bentho-pelagic mesocosms and compared to the actual ecosystem, a turbid brackish lagoon of the southern Baltic Sea. Mesocosm were either manipulated to be colonized by macrophytes, or stayed phytoplankton dominated. Oxygen evolution was monitored over a period of five months in 5 min (mesocosms) to 10 min (ecosystem) intervals. Surface and depth-integrated production was calculated to analyse seasonal and areal resolved production patterns. It was found that macrophyte mesocosms were more stable, when considering only surface O-2 production. However, calculating depth-integrated production resulted in net-heterotrophy in both shallow mesocosms approaches and the actual ecosystem. This heterotrophy is likely mediated by sediment respiration and POC accumulation in mesocosms, and a low share of productive to respiring water column in the actual ecosystem. Therefore, it seems unlikely that macrophytes will re-settle, as constant net-heterotrophy may allow for high-nutrient turnover at sediment-water interfaces and within the water column, favouring phytoplankton. These results will assist decision makers in developing more effective restoration measures that can mitigate the negative effects of eutrophication on ecosystem function and services.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据