4.8 Article

The desert green algae Chlorella ohadii thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition

期刊

PLANT JOURNAL
卷 106, 期 5, 页码 1260-1277

出版社

WILEY
DOI: 10.1111/tpj.15232

关键词

photoinhibition; photoprotection; chlorella; green algae; photosynthetic antenna size; xanthophyll cycle; D1 turnover

资金

  1. 'Nevet' grant from the Grand Technion Energy Program (GTEP)
  2. Technion VPR Berman Grant for Energy

向作者/读者索取更多资源

While excessive light can harm photosynthesis by causing photoinhibition, certain microalgae like Chlorella ohadii have evolved mechanisms to resist this damage, including reducing PSII antenna size, accumulating protective carotenoids, and rapidly repairing damaged proteins. These mechanisms enable photosynthesis-dependent life in harsh environments.
Although light is the driving force of photosynthesis, excessive light can be harmful. One of the main processes that limits photosynthesis is photoinhibition, the process of light-induced photodamage. When the absorbed light exceeds the amount that is dissipated by photosynthetic electron flow and other processes, damaging radicals are formed that mostly inactivate photosystem II (PSII). Damaged PSII must be replaced by a newly repaired complex in order to preserve full photosynthetic activity. Chlorella ohadii is a green microalga, isolated from biological desert soil crusts, that thrives under extreme high light and is highly resistant to photoinhibition. Therefore, C. ohadii is an ideal model for studying the molecular mechanisms underlying protection against photoinhibition. Comparison of the thylakoids of C. ohadii cells that were grown under low light versus extreme high light intensities found that the alga employs all three known photoinhibition protection mechanisms: (i) massive reduction of the PSII antenna size; (ii) accumulation of protective carotenoids; and (iii) very rapid repair of photodamaged reaction center proteins. This work elucidated the molecular mechanisms of photoinhibition resistance in one of the most light-tolerant photosynthetic organisms, and shows how photoinhibition protection mechanisms evolved to marginal conditions, enabling photosynthesis-dependent life in severe habitats.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据