4.8 Article

Exciton-Trion Polaritons in Doped Two-Dimensional Semiconductors

期刊

PHYSICAL REVIEW LETTERS
卷 126, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.126.127402

关键词

-

资金

  1. CCMR under NSF-MRSEC [DMR-1719875]
  2. NSF EFRI-NewLaw [1741694]

向作者/读者索取更多资源

This paper presents a many-body theory of exciton-trion polaritons (ETPs) in doped two-dimensional semiconductor materials, discussing the energy band structure and composition of ETPs, as well as the dependence of energy splitting and spectral weights on the strength of Coulomb coupling.
We present a many-body theory of exciton-trion polaritons (ETPs) in doped two-dimensional semiconductor materials. ETPs are robust coherent hybrid excitations involving excitons, trions, and photons. In ETPs, the 2-body exciton states are coupled to the material ground state via exciton-photon interaction, and the 4-body trion states are coupled to the exciton states via Coulomb interaction. The trion states are not directly optically coupled to the material ground state. The energy-momentum dispersion of ETPs exhibit three bands. We calculate the energy band dispersions and the compositions of ETPs at different doping densities using Green's functions. The energy splittings between the polariton bands, as well as the spectral weights of the polariton bands, depend on the strength of the Coulomb coupling between the excitons and the trions, which in turn depends sensitively on the doping density. The doping density dependence of the ETP bands and the charged nature of the trion states could enable novel electrical and optical control of ETPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据