4.8 Article

Quantum Hall Valley Splitters and a Tunable Mach-Zehnder Interferometer in Graphene

期刊

PHYSICAL REVIEW LETTERS
卷 126, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.126.146803

关键词

-

资金

  1. ERC
  2. CEA
  3. French Renatech program, Investissements d'Avenir LabEx PALM [ANR-10-LABX-0039-PALM]
  4. EMPIR project SEQUOIA [17FUN04]
  5. EUs Horizon 2020 program
  6. Korea NRF via the SRC Center for Quantum Coherence in Condensed Matter [2016R1A5A1008184]

向作者/读者索取更多资源

Graphene serves as a promising platform for electron quantum optics, with the capability to tune electronic beam splitters and achieve nearly unity transmission. Comparisons with conventional semiconductor interferometers show graphene's robustness to universal processes driving quantum coherence.
Graphene is a very promising test bed for the field of electron quantum optics. However, a fully tunable and coherent electronic beam splitter is still missing. We report the demonstration of electronic beam splitters in graphene that couple quantum Hall edge channels having opposite valley polarizations. The electronic transmission of our beam splitters can be tuned from zero to near unity. By independently setting the beam splitters at the two corners of a graphene p-n junction to intermediate transmissions, we realize a fully tunable electronic Mach-Zehnder interferometer. This tunability allows us to unambiguously identify the quantum interferences due to the Mach-Zehnder interferometer, and to study their dependence with the beam-splitter transmission and the interferometer bias voltage. The comparison with conventional semiconductor interferometers points toward universal processes driving the quantum decoherence in those two different 2D systems, with graphene being much more robust to their effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据