4.5 Article

A Liposomal Gemcitabine, FF-10832, Improves Plasma Stability, Tumor Targeting, and Antitumor Efficacy of Gemcitabine in Pancreatic Cancer Xenograft Models

期刊

PHARMACEUTICAL RESEARCH
卷 38, 期 6, 页码 1093-1106

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11095-021-03045-5

关键词

liposome; gemcitabine; pancreatic cancer; dFdCTP; macrophage

资金

  1. Fujifilm Corporation

向作者/读者索取更多资源

The study characterized the stability, tumor targeting, and payload release of liposome-encapsulated gemcitabine, FF-10832, in mouse models of pancreatic cancer. Results showed that FF-10832 had superior pharmacokinetic properties and better antitumor activity and tolerability compared to unencapsulated gemcitabine. This suggests that FF-10832 is a promising candidate for the treatment of pancreatic cancer.
Purpose The clinical application of gemcitabine (GEM) is limited by its pharmacokinetic properties. The aim of this study was to characterize the stability in circulating plasma, tumor targeting, and payload release of liposome-encapsulated GEM, FF-10832. Methods Antitumor activity was assessed in xenograft mouse models of human pancreatic cancer. The pharmacokinetics of GEM and its active metabolite dFdCTP were also evaluated. Results In mice with Capan-1 tumors, the dose-normalized areas under the curve (AUCs) after FF-10832 administration in plasma and tumor were 672 and 1047 times higher, respectively, than after using unencapsulated GEM. The tumor-to-bone marrow AUC ratio of dFdCTP was approximately eight times higher after FF-10832 administration than after GEM administration. These results indicated that liposomal encapsulation produced long-term stability in circulating plasma and tumor-selective targeting of GEM. In mice with Capan-1, SUIT-2, and BxPC-3 tumors, FF-10832 had better antitumor activity and tolerability than GEM. Internalization of FF-10832 in tumor-associated macrophages (TAMs) was revealed by flow cytometry and confocal laser scanning microscopy, and GEM was efficiently released from isolated macrophages of mice treated with FF-10832. These results suggest that TAMs are one of the potential reservoirs of GEM in tumors. Conclusion This study found that FF-10832 had favorable pharmacokinetic properties. The liposomal formulation was more effective and tolerable than unencapsulated GEM in mouse xenograft tumor models. Hence, FF-10832 is a promising candidate for the treatment of pancreatic cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据