4.7 Article

Mechanism of metabolic resistance to pymetrozine in Nilaparvata lugens: over-expression of cytochrome P450 CYP6CS1 confers pymetrozine resistance

期刊

PEST MANAGEMENT SCIENCE
卷 77, 期 9, 页码 4128-4137

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/ps.6438

关键词

Nilaparvata lugens; pymetrozine; resistance mechanisms; P450 monooxygenase; NlCYP6CS1

资金

  1. National Natural Science Foundation of China [31672068, 31972298]

向作者/读者索取更多资源

In this study, a pymetrozine-resistant strain of brown planthopper was established, and it was found that the overexpression of NlCYP6CS1 gene is one of the key factors contributing to pymetrozine resistance. RNA interference (RNAi) suppression of NlCYP6CS1 gene expression increased the toxicity of pymetrozine against brown planthopper. These findings provide insight for proposing a management strategy for pymetrozine resistance.
BACKGROUND Pymetrozine is commonly used for the control of Nilaparvata lugens, and resistance to pymetrozine has been frequently reported in the field populations in recent years. However, the mechanism of brown planthopper resistance to pymetrozine is still unknown. RESULTS In this study, a pymetrozine-resistant strain (PMR) was established, and the potential biochemical resistance mechanism of N. lugens to pymetrozine was investigated. Pymetrozine was synergized by the inhibitor piperonyl butoxide (PBO) in the PMR with 2.83-fold relative synergistic ratios compared with the susceptible strain (Sus). Compared with the Sus, the cytochrome P450 monooxygenase activity of PMR was increased by 1.7 times, and two P450 genes (NlCYP6CS1 and NlCYP301B1) were found to be significantly overexpressed more than 6.0-fold in the PMR. Pymetrozine exposure induced upregulation of NlCYP6CS1 expression in the Sus, but the expression of NlCYP301B1 did not change significantly. In addition, RNA interference (RNAi)-mediated suppression of NlCYP6CS1 gene expression dramatically increased the toxicity of pymetrozine against N. lugens. Moreover, transgenic lines of Drosophila melanogaster expressing NlCYP6CS1 were less susceptible to pymetrozine, and had a stronger ability to metabolize pymetrozine. CONCLUSIONS Taken together, our findings indicate that the overexpression of NlCYP6CS1 is one of the key factors contributing to pymetrozine resistance in N. lugens. And this result is helpful in proposing a management strategy for pymetrozine resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据