4.3 Article

Alleviation of Inflammation and Oxidative Stress in Pressure Overload-Induced Cardiac Remodeling and Heart Failure via IL-6/STAT3 Inhibition by Raloxifene

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2021/6699054

关键词

-

资金

  1. National Natural Science Foundation of China [81570416, 81974032, 82070396]
  2. Science and Technology Project Foundation of Wuhan [2017060201010175, 2019020701011439]
  3. Hubei Province Health and Family Planning Scientific Research Project [WJ2019M120]

向作者/读者索取更多资源

In this study, inflammation and IL-6/STAT3 signaling were found to be activated in pressure overload-induced heart failure (HF) in mice. Prolonged IL-6 stimulation also induced oxidative stress and an increase in mitophagy-related proteins in H9c2 myoblasts, all of which were inhibited by raloxifene. These findings suggest that IL-6/STAT3 signaling may play a role in the pathogenesis of myocardial hypertrophy and HF.
Background. Inflammation and oxidative stress are involved in the initiation and progress of heart failure (HF). However, the role of the IL6/STAT3 pathway in the pressure overload-induced HF remains controversial. Methods and Results. Transverse aortic constriction (TAC) was used to induce pressure overload-HF in C57BL/6J mice. 18 mice were randomized into three groups (Sham, TAC, and TAC+raloxifene, n = 6, respectively). Echocardiographic and histological results showed that cardiac hypertrophy, fibrosis, and left ventricular dysfunction were manifested in mice after TAC treatment of eight weeks, with aggravation of macrophage infiltration and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) expression in the myocardium. TAC (four and eight weeks) elevated the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) and prohibitin2 (PHB2) protein expression. Importantly, IL-6/gp130/STAT3 inhibition by raloxifene alleviated TAC-induced myocardial inflammation, cardiac remodeling, and dysfunction. In vitro, we demonstrated cellular hypertrophy with STAT3 activation and oxidative stress exacerbation could be elicited by IL-6 (25 ng/mL, 48 h) in H9c2 myoblasts. Sustained IL-6 stimulation increased intracellular reactive oxygen species, repressed mitochondrial membrane potential (MMP), decreased intracellular content of ATP, and led to decreased SOD activity, an increase in iNOS protein expression, and increased protein expression of Pinkl, Parkin, and Bnip3 involving in mitophagy, all of which were reversed by raloxifene. Conclusion. Inflammation and IL-6/STAT3 signaling were activated in TAGinduced HF in mice, while sustained IL-6 incubation elicited oxidative stress and mitophagy-related protein increase in H9c2 myoblasts, all of which were inhibited by raloxifene. These indicated IL-6/STAT3 signaling might be involved in the pathogenesis of myocardial hypertrophy and HF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据