4.3 Article

Hydromorphone Protects against CO2 Pneumoperitoneum-Induced Lung Injury via Heme Oxygenase-1-Regulated Mitochondrial Dynamics

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2021/9034376

关键词

-

资金

  1. National Natural Science Foundation of China [81772106, 82004076]

向作者/读者索取更多资源

The study demonstrated that pretreatment with hydromorphone could alleviate pneumoperitoneum-induced lung injury in mice by enhancing HO-1-regulated mitochondrial dynamics. In clinical patients, hydromorphone pretreatment resulted in lower levels of CC-16 and ICAM-1 compared to morphine pretreatment.
Various pharmacological agents and protective methods have been shown to reverse pneumoperitoneum-related lung injury, but identifying the best strategy is challenging. Herein, we employed lung tissues and blood samples from C57BL/6 mice with pneumoperitoneum-induced lung injury and blood samples from patients who received laparoscopic gynecological surgery to investigate the therapeutic role of hydromorphone in pneumoperitoneum-induced lung injury along with the underlying mechanism. We found that pretreatment with hydromorphone alleviated lung injury in mice that underwent CO2 insufflation, decreased the levels of myeloperoxidase (MPO), total oxidant status (TOS), and oxidative stress index (OSI), and increased total antioxidant status (TAS). In addition, after pretreatment with hydromorphone, upregulated HO-1 protein expression, reduced mitochondrial DNA content, and improved mitochondrial morphology and dynamics were observed in mice subjected to pneumoperitoneum. Immunohistochemical staining also verified that hydromorphone could increase the expression of HO-1 in lung tissues in mice subjected to CO2 pneumoperitoneum. Notably, in mice treated with HO-1-siRNA, the protective effects of hydromorphone against pneumoperitoneum-induced lung injury were abolished, and hydromorphone did not have additional protective effects on mitochondria. Additionally, in clinical patients who received laparoscopic gynecological surgery, pretreatment with hydromorphone resulted in lower serum levels of club cell secretory protein-16 (CC-16) and intercellular adhesion molecule-1 (ICAM-1), a lower prooxidant-antioxidant balance (PAB), and higher heme oxygenase-1 (HO-1) activity than morphine pretreatment. Collectively, our results suggest that hydromorphone protects against CO2 pneumoperitoneum-induced lung injury via HO-1-regulated mitochondrial dynamics and may be a promising strategy to treat CO2 pneumoperitoneum-induced lung injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据