4.5 Article

Golgi phosphoprotein 3 promotes the proliferation of gallbladder carcinoma cells via regulation of the NLRP3 inflammasome

期刊

ONCOLOGY REPORTS
卷 45, 期 6, 页码 -

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/or.2021.8064

关键词

gallbladder carcinoma; molecular mechanism; inflammation; golgi phosphoprotein 3; nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3

类别

向作者/读者索取更多资源

The study revealed that GOLPH3 promotes GBC cell proliferation through the NLRP3/Caspase-1 pathway, with their expression levels correlating with GBC growth and serving as potential therapeutic targets.
Golgi phosphoprotein 3 (GOLPH3) has been demonstrated to promote tumor progression in various gastrointestinal malignancies. However, its effects in gallbladder carcinoma (GBC) remain unknown. In the present study, the expression levels of GOLPH3 and nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3) in human GBC tissues were detected by immunohistochemistry, and the clinical data and survival of these patients were analyzed. Next, whether GOLPH3 could affect tumor proliferation via regulation of the NLRP3 inflammasome was investigated in vitro. The results demonstrated that GOLPH3 could promote GBC cell proliferation, and that it regulated protein expression levels of NLRP3, as well as Caspase-1 P10. Conversely, knockdown of NLRP3 reversed the effects of GOLPH3 overexpression on GBC cell proliferation. GOLPH3 and NLRP3 expression levels were found to be upregulated in GBC tissues and their expression was positively correlated. The expression of GOLPH3 and NLRP3 was associated with the expression of the proliferative marker Ki-67 in tissues, and associated with poor survival, tumor stage, degree of differentiation, depth of invasion, carbohydrate antigen 19-9 and C-reactive protein levels in patients with GBC. In summary, these results indicate that GOLPH3 promotes GBC cell proliferation via a NLRP3/Caspase-1 pathway. GOLPH3 and NLRP3 participate in the process of human GBC growth and may serve as a potential therapeutic targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据