4.5 Article

Changing elemental cycles, stoichiometric mismatches, and consequences for pathogens of primary producers

期刊

OIKOS
卷 130, 期 7, 页码 1046-1055

出版社

WILEY
DOI: 10.1111/oik.08253

关键词

autotroph; bacteria; disease; ecological stoichiometry; fungi; parasite; phytoplankton; plant; virus

类别

资金

  1. National Socio-Environmental Synthesis Center (SESYNC)
  2. National Science Foundation [DBI1639145]

向作者/读者索取更多资源

Human-induced changes in biogeochemical cycles alter the availability of carbon, nitrogen, and phosphorus in the environment, leading to changes in the elemental stoichiometry of primary producers. Fungal pathogens may be particularly sensitive to changes in nitrogen supply, while viruses generally respond strongly to changes in the supply of either nitrogen or phosphorus. Viruses may be more homeostatic than fungi, and therefore respond more strongly to changing elemental supplies.
Human-induced changes in biogeochemical cycles alter the availability of carbon (C), nitrogen (N) and phosphorus (P) in the environment, leading to changes in the elemental stoichiometry of primary producers. These changes in elemental ratios may, in turn, alter the degree of stoichiometric mismatch between primary producer hosts and their pathogens. Here, we outline how ecological stoichiometry could be used as a framework to predict the effects of changing nutrient supply on stoichiometric mismatches in autotroph-pathogen interactions. We discuss empirical evidence linking pathogen performance to stoichiometric mismatches arising from shifts in elemental availability. Our synthesis indicates that fungi may be particularly sensitive to changes in N supply and viruses generally respond strongly to changes in the supply of either of these elements, but it also highlighted the need for additional data, especially for bacteria. Consequently, fungal pathogens may respond more strongly to changes in host C:N stoichiometry, whereas viruses may be highly sensitive to both changes in C:N and C:P of hosts. Additionally, our synthesis suggests that viruses may be more homeostatic than fungi, and therefore respond more strongly to changing elemental supplies. Revealing stoichiometric mismatches may greatly support our understanding of how host-pathogen interactions in primary producers will respond to changes in global biogeochemical cycles, controlling disease incidence in primary producers under scenarios of global change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据