4.8 Article

The human tRNA-guanine transglycosylase displays promiscuous nucleobase preference but strict tRNA specificity

期刊

NUCLEIC ACIDS RESEARCH
卷 49, 期 9, 页码 4877-4890

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkab289

关键词

-

资金

  1. Irish Cancer Society [ICS/CRSIIFER]
  2. King Abdullah Scholarship
  3. Enterprise Ireland [CF/2011/1603, CF/2015/0020P]
  4. Science Foundation Ireland [SFI] [IvP 13/IA/1894]

向作者/读者索取更多资源

Base modification can occur throughout a transfer RNA molecule, with a particular emphasis on position 34 of the anticodon loop. Human enzymes can recognize a wide range of artificial derivatives for transfer RNA incorporation, while displaying strict specificity for decoding certain codons. Exploiting the queuosine incorporation pathway shows broad potential for intentionally engineering chemical diversity into transfer RNA anticodons.
Base-modification can occur throughout a transfer RNA molecule; however, elaboration is particularly prevalent at position 34 of the anticodon loop (the wobble position), where it functions to influence protein translation. Previously, we demonstrated that the queuosine modification at position 34 can be substituted with an artificial analogue via the queuine tRNA ribosyltransferase enzyme to induce disease recovery in an animal model of multiple sclerosis. Here, we demonstrate that the human enzyme can recognize a very broad range of artificial 7-deazaguanine derivatives for transfer RNA incorporation. By contrast, the enzyme displays strict specificity for transfer RNA species decoding the dual synonymous NAU/C codons, determined using a novel enzyme-RNA capture-release method. Our data highlight the broad scope and therapeutic potential of exploiting the queuosine incorporation pathway to intentionally engineer chemical diversity into the transfer RNA anticodon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据