4.8 Article

Atomic Engineering of Clusterzyme for Relieving Acute Neuroinflammation through Lattice Expansion

期刊

NANO LETTERS
卷 21, 期 6, 页码 2562-2571

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.0c05148

关键词

Atomic Engineering; Clusterzyme; Acute Inflammation

资金

  1. NSFC [91859101, 81971744, U1932107, 82001952, 81471786]
  2. National Natural Science Foundation of Tianjin [19JCZDJC34000]
  3. Foundation of 'Peiyang Young Researcher' Program of Tianjin University
  4. CAS Interdisciplinary Innovation Team [JCTD-2020-08]

向作者/读者索取更多资源

The artificially engineered Au24Ag1 clusterzyme exhibits high catalytic activity and stability through atomic manipulation, showing an antioxidant property 72 times higher than that of natural antioxidant Trolox. Furthermore, it demonstrates distinctive reactions against inflammation by inhibiting cytokines in the brain at an early stage.
Natural enzymes are efficient and versatile biocatalysts but suffer in their environmental tolerance and catalytic stability. As artificial enzymes, nanozymes can improve the catalytic stability, but it is still a challenge to achieve high catalytic activity. Here, we employed atomic engineering to build the artificial enzyme named Au24Ag1 clusterzyme that hosts an ultrahigh catalytic activity as well as strong physiological stability via atom manipulation. The designed Au24Ag1 clusterzyme activates the Ag-S active site via lattice expansion in the oligomer atom layer, showing an antioxidant property 72 times higher than that of natural antioxidant Trolox. Enzyme-mimicked studies find that Au24Ag1 clusterzyme exhibits high catalase-like (CAT-like) and glutathione peroxidase-like (GPx-like) activity with a maximum reaction rate of 68.9 and 17.8 mu M/min, respectively. Meanwhile, the unique catalytic landscape exhibits distinctive reactions against inflammation by inhibiting the cytokines at an early stage in the brain. Atomic engineering of clusterzymes provides a powerful and attractive platform with satisfactory atomic dispersion for tailoring biocatalysts freely at the atomic level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据