4.6 Article

Comparison of CO2 Reduction Performance with NH3 and H2O between Cu/TiO2 and Pd/TiO2

期刊

MOLECULES
卷 26, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/molecules26102904

关键词

CO2 reduction; Cu; TiO2 photocatalyst; Pd; TiO2 photocatalyst; molar ratio of reductants

向作者/读者索取更多资源

This study aims to investigate the impact of different doped metals on the CO2 reduction characteristics of TiO2 with NH3 and H2O. It was found that Cu/TiO2 outperforms Pd/TiO2 in terms of CO generation per unit weight of photocatalyst and quantum efficiency.
The aim of this study is to clarify the effect of doped metal type on CO2 reduction characteristics of TiO2 with NH3 and H2O. Cu and Pd have been selected as dopants for TiO2. In addition, the impact of molar ratio of CO2 to reductants NH3 and H2O has been investigated. A TiO2 photocatalyst was prepared by a sol-gel and dip-coating process, and then doped with Cu or Pd fine particles by using the pulse arc plasma gun method. The prepared Cu/TiO2 film and Pd/TiO2 film were characterized by SEM, EPMA, TEM, STEM, EDX, EDS and EELS. This study also has investigated the performance of CO2 reduction under the illumination condition of Xe lamp with or without ultraviolet (UV) light. As a result, it is revealed that the CO2 reduction performance with Cu/TiO2 under the illumination condition of Xe lamp with UV light is the highest when the molar ratio of CO2/NH3/H2O = 1:1:1 while that without UV light is the highest when the molar ratio of CO2/NH3/H2O = 1:0.5:0.5. It is revealed that the CO2 reduction performance of Pd/TiO2 is the highest for the molar ratio of CO2/NH3/H2O = 1:1:1 no matter the used Xe lamp was with or without UV light. The molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp with UV light was 10.2 mu mol/g, while that for Pd/TiO2 was 5.5 mu mol/g. Meanwhile, the molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp without UV light was 2.5 mu mol/g, while that for Pd/TiO2 was 3.5 mu mol/g. This study has concluded that Cu/TiO2 is superior to Pd/TiO2 from the viewpoint of the molar quantity of CO per unit weight of photocatalyst as well as the quantum efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据