4.6 Article

Deciphering the Interactions of Bioactive Compounds in Selected Traditional Medicinal Plants against Alzheimer's Diseases via Pharmacophore Modeling, Auto-QSAR, and Molecular Docking Approaches

期刊

MOLECULES
卷 26, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/molecules26071996

关键词

Alzheimer’ s; pharmacophore modeling; QSAR; molecular docking; bioactive compounds; neurodegenerative diseases

资金

  1. Taif University Researchers, Supporting Program, Taif University, Saudi Arabia [TURSP-2020/153]

向作者/读者索取更多资源

Flavonoid compounds from medicinal plants were evaluated for their inhibitory role on AChE, BChE, and MAO activity, with pharmacophore modeling, auto-QSAR prediction, and molecular studies used. The study produced pharmacophore models that identified active compounds with a high success rate, and machine learning-based models were used to predict bioactivities with promising results. Docking studies revealed potential lead compounds for drug improvement against neurodegenerative diseases.
Neurodegenerative diseases, for example Alzheimer's, are perceived as driven by hereditary, cellular, and multifaceted biochemical actions. Numerous plant products, for example flavonoids, are documented in studies for having the ability to pass the blood-brain barrier and moderate the development of such illnesses. Computer-aided drug design (CADD) has achieved importance in the drug discovery world; innovative developments in the aspects of structure identification and characterization, bio-computational science, and molecular biology have added to the preparation of new medications towards these ailments. In this study we evaluated nine flavonoid compounds identified from three medicinal plants, namely T. diversifolia, B. sapida, and I. gabonensis for their inhibitory role on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoamine oxidase (MAO) activity, using pharmacophore modeling, auto-QSAR prediction, and molecular studies, in comparison with standard drugs. The results indicated that the pharmacophore models produced from structures of AChE, BChE and MAO could identify the active compounds, with a recuperation rate of the actives found near 100% in the complete ranked decoy database. Moreso, the robustness of the virtual screening method was accessed by well-established methods including enrichment factor (EF), receiver operating characteristic curve (ROC), Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC), and area under accumulation curve (AUAC). Most notably, the compounds' pIC(50) values were predicted by a machine learning-based model generated by the AutoQSAR algorithm. The generated model was validated to affirm its predictive model. The best models achieved for AChE, BChE and MAO were models kpls_radial_17 (R-2 = 0.86 and Q(2) = 0.73), pls_38 (R-2 = 0.77 and Q(2) = 0.72), kpls_desc_44 (R-2 = 0.81 and Q(2) = 0.81) and these externally validated models were utilized to predict the bioactivities of the lead compounds. The binding affinity results of the ligands against the three selected targets revealed that luteolin displayed the highest affinity score of -9.60 kcal/mol, closely followed by apigenin and ellagic acid with docking scores of -9.60 and -9.53 kcal/mol, respectively. The least binding affinity was attained by gallic acid (-6.30 kcal/mol). The docking scores of our standards were -10.40 and -7.93 kcal/mol for donepezil and galanthamine, respectively. The toxicity prediction revealed that none of the flavonoids presented toxicity and they all had good absorption parameters for the analyzed targets. Hence, these compounds can be considered as likely leads for drug improvement against the same.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据