4.7 Article

Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan

期刊

MEDICAL IMAGE ANALYSIS
卷 70, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.media.2021.101992

关键词

COVID-19; Chest CT; Federated learning; Semi-supervision

资金

  1. Center for Interventional Oncology, NIH [1ZIDBC011242, 1ZIACL040015]
  2. Intramural Research Program of the NIH

向作者/读者索取更多资源

This study explores the use of federated and semi-supervised learning techniques to address the variability in data and annotations in COVID-19 detection. Through experiments on a multinational database, it is found that federated learning protects data privacy and semi-supervised learning helps reduce annotation burden. This novel approach shows promising results in transfer learning.
The recent outbreak of Coronavirus Disease 2019 (COVID-19) has led to urgent needs for reliable diagnosis and management of SARS-CoV-2 infection. The current guideline is using RT-PCR for testing. As a complimentary tool with diagnostic imaging, chest Computed Tomography (CT) has been shown to be able to reveal visual patterns characteristic for COVID-19, which has definite value at several stages during the disease course. To facilitate CT analysis, recent efforts have focused on computer-aided characterization and diagnosis with chest CT scan, which has shown promising results. However, domain shift of data across clinical data centers poses a serious challenge when deploying learning-based models. A common way to alleviate this issue is to fine-tune the model locally with the target domains local data and annotations. Unfortunately, the availability and quality of local annotations usually varies due to heterogeneity in equipment and distribution of medical resources across the globe. This impact may be pronounced in the detection of COVID-19, since the relevant patterns vary in size, shape, and texture. In this work, we attempt to find a solution for this challenge via federated and semi-supervised learning. A multi-national database consisting of 1704 scans from three countries is adopted to study the performance gap, when training a model with one dataset and applying it to another. Expert radiologists manually delineated 945 scans for COVID-19 findings. In handling the variability in both the data and annotations, a novel federated semi-supervised learning technique is proposed to fully utilize all available data (with or without annotations). Federated learning avoids the need for sensitive data-sharing, which makes it favorable for institutions and nations with strict regulatory policy on data privacy. Moreover, semi-supervision potentially reduces the annotation burden under a distributed setting. The proposed framework is shown to be effective com pared to fully supervised scenarios with conventional data sharing instead of model weight sharing. ? 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据