4.4 Article

Representing Tuberculosis Transmission with Complex Contagion: An Agent-Based Simulation Modeling Approach

期刊

MEDICAL DECISION MAKING
卷 41, 期 6, 页码 641-652

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0272989X211007842

关键词

agent-based modeling; complex contagion; infectious disease; modeling; simulation; tuberculosis

向作者/读者索取更多资源

The study developed an agent-based simulation model to investigate the impact of complex contagion on tuberculosis transmission dynamics. Results showed that complex contagion can qualitatively alter the trajectory of a TB epidemic.
Objective A recent study reported a tuberculosis (TB) outbreak in which, among newly infected individuals, exposure to additional active infections was associated with a higher probability of developing active disease. Referred to as complex contagion, multiple reexposures to TB within a short period after initial infection is hypothesized to confer a greater likelihood of developing active infection in 1 y. The purpose of this article is to develop and validate an agent-based simulation model (ABM) to study the effect of complex contagion on population-level TB transmission dynamics. Methods We built an ABM of a TB epidemic using data from a series of outbreaks recorded in the 20th century in Saskatchewan, Canada. We fit 3 dynamical schemes: base, with no complex contagion; additive, in which each reexposure confers an independent risk of activated infection; and threshold, in which a small number of reexposures confers a low risk and a high number of reexposures confers a high risk of activation. Results We find that the base model fits the mortality and incidence output targets best, followed by the threshold and then the additive models. The threshold model fits the incidence better than the base model does but overestimates mortality. All 3 models produce qualitatively realistic epidemic curves. Conclusion We find that complex contagion qualitatively changes the trajectory of a TB epidemic, although data from a high-incidence setting are reproduced better with the base model. Results from this model demonstrate the feasibility of using ABM to capture nuances in TB transmission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据