4.6 Article

A simplified model for the vapor - Solid distribution of Silicon Germanium Chemical Vapor Deposition

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2020.105649

关键词

Chemical vapor deposition; Semiconductor; Epitaxy; Vapor-solid distribution; Thermodynamics; Equilibrium

向作者/读者索取更多资源

A simplified model of Silicon Germanium Chemical Vapor Deposition is proposed for determining Vapor-Solid distributions via any precursor route. The incorporation of the atomic element into the crystal lattice is linked to the loss of all ligands in the chemical precursor. Experimental trends show different ratios relative to silane for different precursors.
A simplified model of Silicon Germanium Chemical Vapor Deposition is proposed for the determination of Vapor - Solid distributions via any precursor route. The incorporation of the atomic element into the crystal lattice imposes to the chemical precursor the loss of all the ligands. Thus, dichlorosilane, silane, and disilane are discriminated on the basis of the amount of the atomic element brought into the equilibrium, instead of being different chemicals. Experimental trends show the ratio relative to silane is 2 for disilane and about 1/2 for dichlorosilane. The ratio relative to Si{100} is 0.59 for Si{110} and 0.82 for Si {111} for a growth via dichlorosilane and germane. Furthermore, Silicon Germanium alloy content is controlled by a thermodynamic equilibrium and the theoretical VS distribution is demonstrated for a growth via silane and germane. VS distribution of any chemistry onto any substrate orientation can therefore be estimated with the application of a straight-forward corrective coefficient to a reference silane and germane chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据