4.7 Article

A novel bacteriocin from Lactobacillus salivarius against Staphylococcus aureus: Isolation, purification, identification, antibacterial and antibiofilm activity

期刊

LWT-FOOD SCIENCE AND TECHNOLOGY
卷 140, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.lwt.2020.110826

关键词

Lactobacillus salivarius; Bacteriocin; Staphylococcus aureus; Antimicrobial activity; Antibiofilm activity

资金

  1. Natural Science Foundation of China [31760042]

向作者/读者索取更多资源

The study identified a novel bacteriocin XJS01 with potential activity against foodborne Staphylococcus aureus. XJS01 exhibited low minimum inhibitory concentration and good resistance to heat treatment, leading to significant inhibition of both planktonic cells and biofilm formation of S. aureus. The bacteriocin impaired membrane permeability, caused cytoplasmic content leakage, and induced cell deformation in S. aureus.
Bacteriocins are known to inhibit various foodborne bacteria and their biofilms; however, few bacteriocins with activity against food-derived Staphylococcus aureus have been reported. Here, a novel bacteriocin (XJS01) from the Lactobacillus salivarius strain CGMCC2070 was obtained, purified, and extensively characterized. Molecular mass and amino acid composition of XJS01 were 666.31 Da and F-S-G-L-A-G-D, respectively. XJS01 inhibited the S. aureus strain 2612:1606BL1486 (S. aureus_26), which was originally isolated from chicken meat. Also, XJS01 showed good resistance to heat treatment, and was only susceptible to pepsin treatment. The minimum inhibitory concentration of XJS01 against S. aureus_26 was 9.85 mu g/mL, which is lower than previously reported levels for most described bacteriocins. Furthermore, exposure to XJS01 also decreased viability and significantly inhibited (p < 0.05) planktonic S. aureus_26 cells. Biofilm formation of S. aureus_26 was also significantly inhibited (p < 0.05). The results of electron microscopy showed that XJS01 impaired membrane permeability in S. aureus_26, caused leakage of cytoplasmic content, and led to cell deformation. In summary, this study identifies the bacteriocin XJS01 as a potentially candidate for the control of S. aureus in foods in either planktonic or biofilm states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据