4.7 Article

A machine learning approach to the prediction of transport and thermodynamic processes in multiphysics systems-heat transfer in a hybrid nanofluid flow in porous media

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jtice.2021.03.043

关键词

Support vector regression; Particle swarm optimization; Artificial intelligence; Hybrid nanofluid; Porous media

向作者/读者索取更多资源

This paper presents a novel approach based on machine learning techniques for predicting transport behaviors of complex multiphysics systems, resulting in significant reductions in computational time and cost. The study focuses on a hybrid nanofluid flow over a blunt object in porous media, including mixed convection, entropy generation, local thermal non-equilibrium, and nonlinear thermal radiation. The SVR model is used to approximate various functions, while the PSO meta-heuristic algorithm is applied for proposing correlations, allowing for quantitative evaluation of variables' contributions.
Comprehensive analyses of transport phenomena and thermodynamics of complex multiphysics systems are laborious and computationally intensive. Yet, such analyses are often required during the design of thermal and process equipment. As a remedy, this paper puts forward a novel approach to the prediction of transport behaviours of multiphysics systems, offering significant reductions in the computational time and cost. This is based on machine learning techniques that utilize the data generated by computational fluid dynamics for training purposes. The physical system under investigation includes a stagnation-point flow of a hybrid nanofluid (Cu-Al2O3/Water) over a blunt object embedded in porous media. The problem further involves mixed convection, entropy generation, local thermal non-equilibrium and non-linear thermal radiation within the porous medium. The SVR (Support Machine Vector) model is employed to approximate velocity, temperature, Nusselt number and shear-stress as well as entropy generation and Bejan number functions. Further, PSO meta-heuristic algorithm is applied to propose correlations for Nusselt number and shear stress. The effects of Nusselt number, temperature fields and shear stress on the surface of the blunt-body as well as thermal and frictional entropy generation are analysed over a wide range of parameters. Further, it is shown that the generated correlations allow a quantitative evaluation of the contribution of a large number of variables to Nusselt number and shear stress. This makes the combined computational and artificial intelligence (AI) approach most suitable for design purposes. (C) 2021 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据