4.4 Article

Circular intensity differential scattering of light to characterize the coronavirus particles

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.422646

关键词

-

类别

向作者/读者索取更多资源

Angle-resolved circularly polarized light scattering calculations can be used to distinguish virus particles from nonvirus particles, with the scattering signature sensitive to chiral parameters that reveal information about the particles. Different electromagnetic models and parameters, such as RNA polymer changes and packaging, can influence the scattering calculations and provide insights into the interaction of virus particles with light.
Angle-resolved circularly polarized light scattering calculations are demonstrated to identify virus particles from nonvirus particles. A coronavirus particle is modeled as having a spherical shaped envelope with cylindrical spikes projected from the envelope surface, and the single-stranded ribonucleic acid (RNA) genome polymer has been mimicked with a toroidal helix. The influence of genome polymer packaged as a standard helix in the virion core is also demonstrated. We investigated four different electromagnetic models: (i) a nucleated sphere with spikes that is a coronavirus particle, (ii) a nucleated sphere with no spikes, (iii) a homogeneous sphere, and (iv) a respiratory fluid containing a virus particle. The angular pattern of scattered circularly polarized light, the circular intensity differential scattering of light (CIDS), served as a particle's signature. This scattering signature is found sensitive to the chiral parameters that reveal information about the particles. The effect of changes in the RNA polymer, changes in its packaging, number of turns, handedness, and size are demonstrated on the scattering calculations. Additionally, the extinction efficiency, the depolarization ratio, the total scattered intensity, and the effect of changes in the wavelength of incident light on these scattering quantities are investigated. This biophysical method can offer a label-free identification of virus particles and can help understand their interaction with light. (C) 2021 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据