4.6 Review

Influence of resistance training load on measures of skeletal muscle hypertrophy and improvements in maximal strength and neuromuscular task performance: A systematic review and meta-analysis

期刊

JOURNAL OF SPORTS SCIENCES
卷 39, 期 15, 页码 1723-1745

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/02640414.2021.1898094

关键词

Strength; muscle hypertrophy; resistance training; load; systematic review

向作者/读者索取更多资源

Higher-load and lower-load resistance training induce similar muscle hypertrophy but higher-load training produces superior strength performance, particularly in 1-RM. However, the impact of resistance training loads on neuromuscular task performance remains uncertain.
This systematic review and meta-analysis determined resistance training (RT) load effects on various muscle hypertrophy, strength, and neuromuscular performance task [e.g., countermovement jump (CMJ)] outcomes. Relevent studies comparing higher-load [>60% 1-repetition maximum (RM) or <15-RM] and lower-load (<= 60% 1-RM or >= 15-RM) RT were identified, with 45 studies (from 4713 total) included in the meta-analysis. Higher- and lower-load RT induced similar muscle hypertrophy at the whole-body (lean/fat-free mass; [ES (95% CI) = 0.05 (-0.20 to 0.29), P = 0.70]), whole-muscle [ES = 0.06 (-0.11 to 0.24), P = 0.47], and muscle fibre [ES = 0.29 (-0.09 to 0.66), P = 0.13] levels. Higher-load RT further improved 1-RM [ES = 0.34 (0.15 to 0.52), P = 0.0003] and isometric [ES = 0.41 (0.07 to 0.76), P = 0.02] strength. The superiority of higher-load RT on 1-RM strength was greater in younger [ES = 0.34 (0.12 to 0.55), P = 0.002] versus older [ES = 0.20 (-0.00 to 0.41), P = 0.05] participants. Higher- and lower-load RT therefore induce similar muscle hypertrophy (at multiple physiological levels), while higher-load RT elicits superior 1-RM and isometric strength. The influence of RT loads on neuromuscular task performance is however unclear.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据