4.5 Article

Blood microbiota and metabolomic signature of major depression before and after antidepressant treatment: a prospective case-control study

期刊

JOURNAL OF PSYCHIATRY & NEUROSCIENCE
卷 46, 期 3, 页码 E358-E368

出版社

CMA-CANADIAN MEDICAL ASSOC
DOI: 10.1503/jpn.200159

关键词

-

资金

  1. Programme Hospitalier de Recherche Clinique National of the French Ministry of Health [AOM06022, AOM09122]
  2. Assistance Publique-Hopitaux de Paris

向作者/读者索取更多资源

Patients with major depressive episodes exhibit distinct blood microbiome and metabolomic signatures, which change after treatment. Dysbiosis in the blood may serve as a new therapeutic target and prognostic tool for the treatment of major depressive episodes.
Background: The microbiota interacts with the brain through the gut-brain axis, and a distinct dysbiosis may lead to major depressive episodes. Bacteria can pass through the gut barrier and be found in the blood. Using a multiomic approach, we investigated whether a distinct blood microbiome and metabolome was associated with major depressive episodes, and how it was modulated by treatment. Methods: In this case-control multiomic study, we analyzed the blood microbiome composition, inferred bacterial functions and metabolomic profile of 56 patients experiencing a current major depressive episode and 56 matched healthy controls, before and after treatment, using 16S rDNA sequencing and liquid chromatography coupled to tandem mass spectrometry. Results: The baseline blood microbiome in patients with a major depressive episode was distinct from that of healthy controls (patients with a major depressive episode had a higher proportion of Janthinobacterium and lower levels of Neisseria) and changed after antidepressant treatment. Predicted microbiome functions confirmed by metabolomic profiling showed that patients who were experiencing a major depressive episode had alterations in the cyanoamino acid pathway at baseline. High baseline levels of Firmicutes and low proportions of Bosea and Tetrasphaera were associated with response to antidepressant treatment. Based on inferred baseline metagenomic profiles, bacterial pathways that were significantly associated with treatment response were related to xenobiotics, amino acids, and lipid and carbohydrate metabolism, including tryptophan and drug metabolism. Metabolomic analyses showed that plasma tryptophan levels are independently associated with response to antidepressant treatment. Limitations: Our study has some limitations, including a lack of information on blood microbiome origin and the lack of a validation cohort to confirm our results. Conclusion: Patients with depression have a distinct blood microbiome and metabolomic signature that changes after treatment. Dysbiosis could be a new therapeutic target and prognostic tool for the treatment of patients who are experiencing a major depressive episode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据