4.6 Article

Heating ability modulation by clustering of magnetic particles for precision therapy and diagnosis

期刊

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6463/ac000b

关键词

magnetic nanoparticles; clustering; magnetic hyperthermia; magnetic particle imaging; dipole-dipole interaction

向作者/读者索取更多资源

This study investigates the magnetic and thermal properties of clustered magnetite nanoparticles in a high-frequency magnetic field using rate equations. It finds that particle clustering significantly modifies the shape of hysteresis loops and affects the power released as heat to a host medium. Clustering of particles can either enhance or reduce the released power, with opposite effects observed depending on the dimensions of the clusters.
Magnetic and thermal properties of clustered magnetite nanoparticles submitted to a high-frequency magnetic field is studied by means of rate equations. A simple model of large particle clusters (containing more than one hundred individual particles) is introduced. Dipolar interactions among clustered particles markedly modify shape and area of the hysteresis loops in a way critically dependent on particle size and cluster dimensions, thereby modulating the power released as heat to a host medium. For monodisperse and polydisperse systems, particle clustering can lead to either a significant enhancement or a definite reduction of the released power; in particular cases the same particles can produce opposite effects in dependence of the dimensions of the clusters. Modulation by clustering of the heating ability of magnetic nanoparticles has impact on applications requiring optimization and accurate control of temperature in the host medium, such as magnetic hyperthermia for precision therapy or fluid flow management, and advanced diagnostics involving magnetic tracers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据