4.8 Article

Combined Spectroscopic Methods of Determination of Density of Electronic States: Comparative Analysis of Diffuse Reflectance Spectroelectrochemistry and Reversed Double-Beam Photoacoustic Spectroscopy

期刊

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
卷 12, 期 11, 页码 3019-3025

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.1c00262

关键词

-

资金

  1. Polish National Science Centre (NCN) [2015/19/B/ST5/00950]
  2. MEXT KAKENHI [15H022010, 18H039230]

向作者/读者索取更多资源

Both diffuse reflectance spectroelectrochemistry (SE-DRS) and reversed double-beam photoacoustic spectroscopy (RDB-PAS) provide unique, complementary information on the density of electronic states (DOS) around the conduction band bottom, which is crucial for understanding and predicting the photocatalytic reactivity of semiconductors.
The diffuse reflectance spectroelectrochemistry (SE-DRS) and reversed double-beam photoacoustic spectroscopy (RDB-PAS) provide unique, complementary information on the density of electronic states (DOS) in the vicinity of the conduction band bottom. The measurements are performed under quite different conditions, representing the solid/liquid and solid/gas interfaces in SE-DRS and RDB-PAS, respectively. DOS profiles obtained from both types of measurements can be considered as unique fingerprints of the tested materials. The analysis of DOS profiles recorded for 16 different TiO2 samples confirms that both methods similarly describe the shapes of DOS profiles around the conduction band edges. The states characterized by energy higher than VBT (valence-band top) + E-g can be considered as electronic states within the conduction band. Recognition of the potential of the conduction band bottom allows one to classify the electronic states as deep or shallow electron traps or conduction band states, which play different roles in photocatalysis. The comparative analysis shows that both methods provide very useful information which can be used in understanding and predicting the photo(electro)catalytic reactivity of semiconductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据