4.6 Article

Benchmarking Correlated Methods for Static and Dynamic Polarizabilities: The T145 Data Set Evaluated with RPA, RPA(D), HRPA, HRPA(D), SOPPA, SOPPA(CC2), SOPPA(CCSD), CC2, and CCSD

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 125, 期 17, 页码 3785-3792

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.1c01931

关键词

-

向作者/读者索取更多资源

The study evaluated various correlated linear response methods for predicting static and dynamic polarizabilities, with HRPA(D) showing the best performance apart from CCSD. Improvements were seen in SOPPA results when coupled-cluster amplitudes were used.
Due to the importance of predicting static and dynamic polarizabilities, the performance of various correlated linear response methods including random phase approximation (RPA), RPA(D), higher-order random phase approximation (HRPA), HRPA(D), second-order polarization propagator approximation (SOPPA), SOPPA(CC2), SOPPA(CCSD), CC2, and CCSD has been evaluated against CCSD(T) (static case) and CCSD (dynamic cases) for the T145 set of 145 organic molecules. The benchmark reveals that the HRPA(D) method has the best performance for both static and dynamic polarizabilities apart from CCSD. RPA(D) ranks second for the dynamic cases and third for the static case. Using coupled-cluster amplitudes in SOPPA(CCSD) and SOPPA(CC2), the SOPPA results are significantly improved. The HRPA method has the largest deviations from the reference values for both cases. In general, according to the performance and computational cost of the methods, the HRPA(D) and RPA(D) methods are proposed for calculations of static and dynamic polarizabilities of this and similar sets of molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据