4.4 Article

Postural mechanisms in moderate-to-severe cerebral palsy

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 125, 期 5, 页码 1698-1719

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00549.2020

关键词

cerebral palsy; feedback modeling; postural control; systems identification; trunk

资金

  1. National Science Foundation [Disability and Rehabilitation Engineering (DARE)] [1803714, 2015660]
  2. NIH [R03 DC013858]

向作者/读者索取更多资源

The study used a support system to experiment the postural control mechanisms, showing that individuals with moderate-to-severe cerebral palsy may adopt a simple control system with significant sensorimotor noise. Compared to healthy adults, they exhibit lower damping and larger corrective torque relative to body size.
People with moderate-to-severe cerebral palsy (CP) have the greatest need for postural control research yet are usually excluded from research due to deficits in sitting ability. We use a support system that allows us to quantify and model postural mechanisms in nonambulatory children with CP. A continuous external bench tilt stimulus was used to evoke trunk postural responses in seven sitting children with CP (ages 2.5 to 13yr) in several test sessions. Eight healthy adults were also included. Postural sway was analyzed with root mean square (RMS) sway and RMS sway velocity, along with frequency response functions (FRF, gain and phase) and coherence functions across two different stimulus amplitudes. A feedback model (including sensorimotor noise, passive, reflexive, and sensory integration mechanisms) was developed to hypothesize how postural control mechanisms are organized and function. Experimental results showed large RMS sway, FRF gains, and variability compared with adults. Modeling suggested that many subjects with CP adopted simple control with major contributions from a passive and reflexive mechanism and only a small contribution from active sensory integration. In contrast, mature trunk postural control includes major contributions from sensory integration and sensory reweighting. Relative to their body size, subjects with CP showed significantly lower damping, three to five times larger corrective torque, and much higher sensorimotor noise compared with the healthy mature system. Results are the first characterization of trunk postural responses and the first attempt at system identification in moderate-to-severe CP, an important step toward developing and evaluating more targeted interventions. NEW & NOTEWORTHY Cerebral palsy (CP) is the most common cause of motor disability in children. People with moderate-tosevere CP are typically nonambulatory and have major impairments in trunk postural control. We present the first systems identification study to investigate postural responses to external stimulus in this population and hypothesize at how the atypical postural control system functions with use of a feedback model. People with moderate-to-severe CP may use a simple control system with significant sensorimotor noise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据