4.5 Article

Pridopidine reduces mutant huntingtin-induced endoplasmic reticulum stress by modulation of the Sigma-1 receptor

期刊

JOURNAL OF NEUROCHEMISTRY
卷 158, 期 2, 页码 467-481

出版社

WILEY
DOI: 10.1111/jnc.15366

关键词

endoplasmic reticulum (ER) stress; Huntington disease; neurodegeneration; Sigma-1 receptor; unfolded protein response

资金

  1. Israel Science Foundation [2394/17]

向作者/读者索取更多资源

Pridopidine can significantly alleviate mHtt-induced ER stress, reduce markers of the three UPR branches with the strongest effect on the PERK branch. This effect is S1R-dependent and may be achieved by increasing insoluble S1R and stabilizing activated S1R oligomers.
The endoplasmic reticulum (ER)-localized Sigma-1 receptor (S1R) is neuroprotective in models of neurodegenerative diseases, among them Huntington disease (HD). Recent clinical trials in HD patients and preclinical studies in cellular and mouse HD models suggest a therapeutic potential for the high-affinity S1R agonist pridopidine. However, the molecular mechanisms of the cytoprotective effect are unclear. We have previously reported strong induction of ER stress by toxic mutant huntingtin (mHtt) oligomers, which is reduced upon sequestration of these mHtt oligomers into large aggregates. Here, we show that pridopidine significantly ameliorates mHtt-induced ER stress in cellular HD models, starting at low nanomolar concentrations. Pridopidine reduced the levels of markers of the three branches of the unfolded protein response (UPR), showing the strongest effects on the PKR-like endoplasmic reticulum kinase (PERK) branch. The effect is S1R-dependent, as it is abolished in cells expressing mHtt in which the S1R was deleted using CRISPR/Cas9 technology. mHtt increased the level of the detergent-insoluble fraction of S1R, suggesting a compensatory cellular mechanism that responds to increased ER stress. Pridopidine further enhanced the levels of insoluble S1R, suggesting the stabilization of activated S1R oligomers. These S1R oligomeric species appeared in ER-localized patches, and not in the mitochondria-associated membranes nor the ER-derived quality control compartment. The colocalization of S1R with the chaperone BiP was significantly reduced by mHtt, and pridopidine restored this colocalization to normal, unstressed levels. Pridopidine increased toxic oligomeric mHtt recruitment into less toxic large sodium dodecyl sulfate-insoluble aggregates, suggesting that this in turn reduces ER stress and cytotoxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据