4.6 Article

Unsupervised machine learning can delineate central sulcus by using the spatiotemporal characteristic of somatosensory evoked potentials

期刊

JOURNAL OF NEURAL ENGINEERING
卷 18, 期 4, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1741-2552/abf68a

关键词

functional mapping; machine learning; somatosensory evoked potentials

资金

  1. National Institutes of Health-National Institute of Neurological Disorders and Stroke [R01NS112497]

向作者/读者索取更多资源

The study investigated the feasibility of unsupervised delineation of the central sulcus (CS) using spatiotemporal patterns of SSEP captured with ECoG grids, vividly outlining the CS based on SSEP amplitude distribution as a spatial 2D heat map. Unsupervised clustering method separated anterior and posterior channels with 96.3% accuracy, automatically delineating the CS location with high precision.
Objective. Somatosensory evoked potentials (SSEPs) recorded with electrocorticography (ECoG) for central sulcus (CS) identification is a widely accepted procedure in routine intraoperative neurophysiological monitoring. Clinical practices test the short-latency SSEPs for the phase reversal over strip electrodes. However, assessments based on waveform morphology are susceptible to variations in interpretations due to the hand area's localized nature and usually require multiple electrode placements or electrode relocation. We investigated the feasibility of unsupervised delineation of the CS by using the spatiotemporal patterns of the SSEP captured with the ECoG grid. Approach. Intraoperatively, SSEPs were recorded from eight patients using ECoG grids placed over the sensorimotor cortex. Neurosurgeons blinded to the electrophysiology identified the sensory and motor gyri using neuronavigation based on sulcal anatomy. We quantified the most discriminatory time points in SSEPs temporal profile between the primary motor (M1) and somatosensory (S1) cortex using the Fisher discrimination criterion. We visualized the amplitude gradient of the SSEP over a 2D heat map to provide visual feedback for the delineation of the CS based on electrophysiology. Subsequently, we employed spectral clustering using the entire the SSEP waveform without selecting any time points and grouped ECoG channels in an unsupervised fashion. Main results. Consistently in all patients, two different time points provided almost equal discrimination between anterior and posterior channels, which vividly outlined the CS when we viewed the SSEP amplitude distribution as a spatial 2D heat map. The first discriminative time point was in proximity to the conventionally favored similar to 20 ms peak (N20), and the second time point was slightly later than the markedly high similar to 30 ms peak (P30). Still, the location of these time points varied noticeably across subjects. Unsupervised clustering approach separated the anterior and posterior channels with an accuracy of 96.3% based on the time derivative of the SSEP trace without the need for a subject-specific time point selection. In contrast, the raw trace resulted in an accuracy of 88.0%. Significance. We show that the unsupervised clustering of the SSEP trace assessed with subdural electrode grids can delineate the CS automatically with high precision, and the constructed heat maps can localize the motor cortex. We anticipate that the spatiotemporal patterns of SSEP fused with machine learning can serve as a useful tool to assist in surgical planning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据