4.6 Article

Graphene oxide as multi-functional initiator and effective molecular reinforcement in PVP/epoxy composites

期刊

JOURNAL OF MOLECULAR STRUCTURE
卷 1230, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molstruc.2021.129873

关键词

Graphene oxide; Polymerization; Initiator; Toughening; Epoxy; Grafting from

资金

  1. Amrita Vishwa Vidyapeetham

向作者/读者索取更多资源

By grafting PVP onto the surface of Graphene Oxide through a 'grafting from' technique, and incorporating it into epoxy as a reinforcement, the study demonstrated improved mechanical properties and toughness, as well as enhanced rheological properties of the epoxy matrix.
In this work, grafting of Polyvinylpyrrolidone (PVP) onto the surface of Graphene Oxide (GO) by following the 'grafting from' technique was carried out by the GO-initiated cationic polymerization of N-Vinylpyrrolidone monomers. The successful grafting of PVP onto GO sheets was confirmed with the help of various techniques like FTIR, XRD, Raman and XPS. The PVP polymer chain grafted GO (GO-g-PVP) was incorporated into the epoxy matrix as a reinforcement in order to investigate the effect in thermo-mechanical properties of epoxy. From static mechanical testing, it was observed that neat PVP adversely affects the mechanical (tensile) strength of epoxy, whereas the GO-g-PVP shows an improvement of about similar to 13% when compared to the virgin epoxy composites. Rheological data reveals the transformation of epoxy resin from the Newtonian behavior to shear thickening nature by the incorporation of GO-g-PVP. Dynamic mechanical analysis and the intensity of tan dcurves also ratify the rheological observation. The fracture toughness of epoxy composites showed a significant improvement of about 190% than the neat epoxy composites. Electron microscopes are employed to observe the Fractograms to systematically analyze the toughening mechanisms involved. Thermal stability and the temperature of glass transitions were optimized by TGA and DSC analysis. (C) 2021ElsevierB.V. Allrightsreserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据