4.7 Article

Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 334, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2021.116520

关键词

Amino acids; Acid corrosion; Electrochemical techniques; SEM analysis; UV-visible; Computational approaches

向作者/读者索取更多资源

Phenylalanine and Aspartic acid have been studied for their inhibition of mild steel corrosion in hydrochloric acid solution, with their efficiency increasing with concentration and following the Langmuir adsorption mechanism. These compounds act as mixed inhibitors and decrease the dissolution of ferric ions in corrosive solutions, with good adsorption on the MS surface observed through SEM images. Computational methods like DFT, MCS, and MDS were used to study the metal-inhibitor interaction type.
Two organic compounds namely, Phenylalanine (P1) and Aspartic acid (P2) have been studied for inhibiting mild steel (MS) corrosion in molar hydrochloric acid solution. The Anti-corrosion activity has been evaluated using electrochemical impedance spectroscopy (EIS), potentio-dynamic polarization (PDP), Density Functional Theory (DFT), Monte-Carlo Simulation (MCS) and Molecular Dynamic Simulation (MDS). The corrosive solutions were analyzed by UV-visible spectrometry (UV-vis). The surface of MS after the corrosion tests was analyzed by Scanning Electron Microscopy (SEM). The inhibition efficiency of the two amino acids (P1 and P2) increased by the increase in their concentration and reached an optimal value of 87% and 89% for P1 and P2 respectively. Their adsorption mechanism was consistent with the isotherm Langmuir. Polarization measurements led to the conclusion that the two compounds act as mixed inhibitors. UV-visible shows that the addition of the two compounds decreases the dissolution of ferric ions in the corrosive solutions. Scanning Electron Microscopy (SEM) images show that both inhibitors were well adsorbed on the MS surface. Computational approaches of the metal-inhibitor interaction type were studied and interpreted using DFT, MCS and MDS. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据