4.5 Article

Development of MPI relaxometer for characterization of superparamagnetic nanoparticles

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmmm.2021.168082

关键词

Magnetic particle imaging (MPI); Relaxometer; Superparamagnetic iron oxide nanoparticle; (SPION); Relaxation time; Resolution; Electromagnetic Interference (EMI)

资金

  1. Scientific and Technological Research Council of Turkey under TUBITAK [115E776, 115E777]

向作者/读者索取更多资源

This paper presents the design, implementation, and experimental measurements of a custom-made MPI relaxometer to characterize SPIONs as an MPI tracer. Perimag (R) was found to be the highest resolution tracer material at all experimental conditions for MPI scanning. The relative signal strength of the Synomag tracer outperformed other nanoparticles that determine the signal-to-noise ratio (SNR) for MPI.
This paper presents the design, implementation, and experimental measurements of a custom-made MPI relaxometer to characterize superparamagnetic iron oxide nanoparticles (SPIONs) as a tracer for Magnetic Particle Imaging (MPI). The relaxometer is electromagnetic interference (EMI) shielded and serves as a zero magnetic field MPI scanner at 4.6 kHz, and 9.9 kHz. The post-processing analysis was performed on commercially available Vivotrax, Perimag (R), and Synomag nanoparticles for the evaluation of relaxation time, resolution, frequency spectrum of the odd harmonics up to 20th harmonic, and relative signal strength essential parameters for MPI. Sinusoidal excitation magnetic fields of 5 mT, 10 mT, and 15 mT were respectively applied to assess their implications on the resolution of the samples. Moreover, measurements were performed at two different frequencies (4.6 kHz, 9.9 kHz), and the driving frequency-dependent relaxation time of the magnetic nanoparticles was calculated. Perimag (R) was found to be the highest resolution tracer material at all experimental conditions for MPI scanning. The relative signal strength of the Synomag tracer outperformed other nanoparticles that determine the signal-to-noise ratio (SNR) for MPI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据