4.7 Article

CuO-ZnO-PANI a lethal p-n-p combination in degradation of 4-chlorophe-nol under visible light

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 416, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2021.125989

关键词

Photocatalyst; Visible light; 4-Chlorophenol; p-n-p mechanism; polyaniline

资金

  1. [ANID/FONDAP/15110019]

向作者/读者索取更多资源

Recent interest and responsibility in protecting water resources have led scientists to develop mechanisms using sustainable resources like sunlight to remove pollutants from water. Utilizing unique materials and studying semiconductor structures are key in achieving photocatalytic degradation of water pollutants under visible light excitation.
Recent interest and responsibility to retain the water resources rose among people. Scientists have been engaged to develop the mechanism that involves the freely available sunlight - a sustainable resource - to remove the pollutants from water to make it again suitable for life. Ample research was reported in the removal of dye pollutants present in water. For this they have utilized p type and n type semiconductors or combination of both (p-n type) under the excitation of a wide range of electromagnetic band energy. Most of the interest lies in emerging out of the mechanism with hybrid semiconductors to remove the previously reported flaws. Toward this regard, this manuscript aims to develop unique material using the underlying p-n-p model for harnessing visible light in catalysis. Initially, p-n structure was developed with copper oxide (p-type) and zinc oxide (n-type), then polyaniline (p-type) conjugated at different concentrations (0.5 M, 0.7 M & 1.0 M), to yield p-n-p models, using precipitation followed by sonication techniques. Detailed physicochemical investigations were conducted on the resultant p-n-p material to elucidate its characteristics. Furthermore, the mechanism was advocated for the best photocatalytic activity under visible light excitation for the degradation of 4-chlorophenol and compared with the performance of a standard p-n (CuO/ZnO) combination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据