4.7 Article

Experimental and DFT studies on the characteristics of PbO/PbCl2 adsorption by Si/Al- based sorbents in the simulated flue gas

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 407, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.124742

关键词

Lead vapor; Density functional theory; Reaction sites; Adsorption performance

资金

  1. National Key Research and Development Program of China [2019YFC1906801]
  2. Analytical and Testing Centre at HUST

向作者/读者索取更多资源

Mineral oxides are effective in-furnace sorbents for controlling lead emissions at high temperatures, and Si/Al-based compounds can chemically adsorb Pb. The temperature increase affects the Gibbs free energy of Pb adsorption, and high-temperature calcination alters the system's bond lengths and angles, leading to decreased Pb adsorption capacity.
Mineral oxides are effective in-furnace sorbents used to control lead (Pb) emissions in flue gas at high temperatures. In this paper, the PbO/PbCl2 adsorption characteristics of sorbents were investigated via experimental and density functional theory (DFT) methods. The results show that Si/Al-based compounds can chemically adsorb Pb, and the adsorption is related to the Si-O and Al-O bonds in the sorbents. Exposed Si and O atoms on SiO2 surfaces and exposed Al and O atoms on Al2O3 surfaces are the active sites for Pb adsorption, and PbO is easier to remove than PbCl2. Pb adsorption is promoted in a mixture of SiO2 and Al2O3. Doping Si atoms into Al2O3(100) promotes PbO adsorption, and doped three-coordinate Si atoms have a more obvious promotion effect than doped two-coordinate Si atoms. Doping Al atoms into SiO2(001) has no obvious effect on PbO adsorption. The effect of temperature on Pb adsorption was studied by thermodynamic analysis. The Gibbs free energy difference for PbO adsorption on SiO2(001) increases from 373.04-32.42 kJ/mol as the temperature increases from 300 to 1800 K. High-temperature calcination changes the bond length and bond angle of the system, affecting the stabilities of atomic configurations and decreasing the Pb adsorption capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据