4.7 Article

Response of soil bacterial communities to sulfadiazine present in manure: Protection and adaptation mechanisms of extracellular polymeric substances

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 408, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.124887

关键词

EPS; Antibiotic resistance; Sulfonamides

资金

  1. National Natural Science Foundation of China [41571130061, 21661132004]

向作者/读者索取更多资源

The study revealed the response of soil bacterial communities to different dosages of SDZ in manure, emphasizing the role of EPS. EPS, mainly composed of tyrosine-like and tryptophan-like substances, plays a positive role in alleviating SDZ stress and reducing the accumulation of antibiotic resistance genes.
Extracellular polymeric substances (EPS) play a dominant role in protective biofilms. However, studies exploring the underlying protective mechanism of EPS have mainly focused on activated sludge, whereas their positive roles in protecting soil microbes from environmental stress have not been elucidated. In this study, we revealed the response of soil bacterial communities to various dosages of sulfadiazine (SDZ) present in manure, with a special emphasis on the role of EPS. Sequencing analysis showed that the bacterial community demonstrated stronger symbiotic relationships and weaker competitive interaction patterns to cope with disturbance induced by SDZ. EPS was mainly composed of tyrosine-like and tryptophan-like substances, and moreover, carboxyl, hydroxyl and ether groups were the main functional groups. An adaptation mechanism, namely the enhanced secretion of tryptophan-like substances, could help alleviate the SDZ stress effectively in the biofilms occurring in soil that experienced long-term manure application. Furthermore, the existence of EPS weakened the accumulation of antibiotic resistance genes (ARGs) in soil. Our results for the first time systematically uncover the joint action of biofilm tolerance and ARGs in resisting SDZ stress, which enhances understanding of the protective role of EPS and the underlying mechanisms governing biofilm functions in soil environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据