4.7 Article

Oxidative removal of antibiotic resistant E. coli by sulfidated zero-valent iron: Homogeneous vs heterogeneous activation

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 408, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.124411

关键词

Sulfidation; Persulfate; Zero-valent iron; Antibiotic resistance; Sulfate radical

资金

  1. Fundamental Research Funds for the Central Universities [FRF-IC-17-007]
  2. National Environmental and Energy Base for International Science & Technology Cooperation

向作者/读者索取更多资源

Sulfidated ZVI activated persulfate system shows high efficiency in removing antibiotic resistant bacteria and genes, suitable for water treatment. The system has a significant inactivation effect on antibiotic resistant E. coli, mainly achieved through SO4•- and HO• radicals.
As an emerging contaminant in water, antibiotic resistant bacteria are threatening the public health gravely. In this study, sulfidated ZVI was used to activate persulfate, for antibiotic resistant E. coli and antibiotic resistant genes removal. Impressively, 7 log of antibiotic resistant E. coli was inactivated within 30 min, in sulfidated ZVI activated persulfate system (S/Fe = 0.05). Electron paramagnetic resonance and free radical quenching experiments suggested that sulfidation treatment did not change the specie of radicals. SO4 center dot- and HO center dot were the main reactive oxygen species for the removal of antibiotic resistant E. coli and genes. Investigation on the activation mechanism of persulfate indicated that persulfate decomposition was mainly attributed to heterogeneous activation. More importantly, in-situ characterization (ATR-FTIR) indicated that the main charge transfer complex was formed on the surface of sulfidated ZVI, which would predominantly mediate the generation of SO4 center dot- and HO center dot. Finally, the proposed system was evaluated in modeling water and secondary effluent. Results revealed that only 2.86 log and 0.84 log of antibiotic resistant E. coli were inactivated in the presence of NOM (10 mg/L) and HCO3- (84 mg/L), respectively. Besides, sulfidated ZVI activated persulfate system could be pH-dependent in actual wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据