4.7 Article

Stochastic modelling of a noise-driven global instability in a turbulent swirling jet

期刊

JOURNAL OF FLUID MECHANICS
卷 916, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2021.133

关键词

bifurcation; turbulence modelling; vortex breakdown

资金

  1. German Research Foundation [PA 920/30-1, PA 920/37-1]

向作者/读者索取更多资源

A method is proposed to estimate the properties of global hydrodynamic instability in turbulent flows by analyzing measurement data of limit-cycle oscillations. The flow dynamics are separated into deterministic and stochastic contributions, with models developed to account for the interaction between the two. The methodology is applied to a turbulent swirling jet to identify the supercritical Hopf bifurcation and demonstrate the identification of flow state from stationary measurements.
A method is developed to estimate the properties of a global hydrodynamic instability in turbulent flows from measurement data of the limit-cycle oscillations. For this purpose, the flow dynamics is separated into deterministic contributions representing the global mode and a stochastic contribution representing the intrinsic turbulent forcing. Stochastic models are developed that account for the interaction between the two and allow the determination of the dynamic properties of the flow from stationary data. The deterministic contributions are modelled by an amplitude equation, which describes the oscillatory dynamics of the instability, and in a second approach by a mean-field model, which additionally captures the interaction between the instability and the mean-flow corrections. The stochastic contributions are considered as coloured noise forcing, representing the spectral characteristics of the stochastic turbulent perturbations. The methodology is applied to a turbulent swirling jet with a dominant global mode. Particle image velocimetry measurements are conducted to ensure that the mode is the most dominant coherent structure, and further pressure measurements provide long time series for the model calibration. The supercritical Hopf bifurcation is identified from the linear growth rate of the global mode, and the excellent agreement between measured and estimated statistics suggest that the model captures the relevant dynamics. This work demonstrates that the sole observation of limit-cycle oscillations is not sufficient to determine the stability of turbulent flows, since the stochastic perturbations obscure the actual bifurcation point. However, the proposed separation of deterministic and stochastic contributions in the dynamical model allows the identification of the flow state from stationary measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据