4.7 Article

Vortex-induced vibrations: a soft coral feeding strategy?

期刊

JOURNAL OF FLUID MECHANICS
卷 916, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2021.252

关键词

particle/fluid flow; vortex instability

资金

  1. Simulation-Based Engineering Science (SBES) program through the CREATE grant of the National Science and Engineering Research Council of Canada (NSERC) [RGPIN-2019-07072, RGPIN-2019-05335]

向作者/读者索取更多资源

Soft corals, such as Antillogorgia bipinnata, are colony building animals that feed by catching food particles brought by currents. Vibrations induced by VIVs can significantly enhance their ability to capture food particles, leading to up to 40% more particles being captured compared to fixed state.
Soft corals, such as the bipinnate sea plume Antillogorgia bipinnata, are colony building animals that feed by catching food particles brought by currents. Because of their flexible skeleton, they bend and sway back and forth with the wave swell. In addition to this low-frequency sway of the whole colony, branches of A. bipinnata vibrate at high frequency with small amplitude and transverse to the flow as the wave flow speed peaks. In this paper, we investigate the origin of these yet unexplained vibrations and consider their effect on soft corals. Estimation of dynamical variables along with finite element implementation of the wake-oscillator model favour vortex-induced vibrations (VIVs) as the most probable origin of the observed rapid dynamics. To assess the impact of the dynamics on filter feeding, we simulated particles advected by the flow around a circular cylinder and calculated the capture rate with an in-house monolithic fluid-structure interaction (FSI) finite element solver and Python code. We observe that vibrating cylinders can capture up to 40 % more particles than fixed cylinders at frequency lock-in. Therefore, VIVs plausibly offer soft corals a better food capture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据