4.3 Article

Robust Design of a Fuel Cell-Turbocharger Hybrid System

出版社

ASME
DOI: 10.1115/1.4050867

关键词

robust design; hybrid systems; solid oxide fuel cell; uncertainty quantification

向作者/读者索取更多资源

Pressurized solid oxide fuel cell systems with a turbocharger can improve cost effectiveness compared to microturbine-based systems, leading to higher electric efficiency and performance at part-load. A detailed steady-state model was developed to simulate and analyze system behavior, with response surfaces used to evaluate the impact of main operating parameters on system performance and profitability. Multi-objective optimization of the system considering capital costs and net power production objectives will be performed, with investigation on the impact of energy market scenarios and evaluation of robustness of top performance solutions using Pareto front.
Pressurized solid oxide fuel cell (SOFC) systems are a particularly attractive conversion technology for their high electric efficiency, potential for cogeneration applications, low carbon emissions, and high performance at part-load. In this work, an innovative biofueled hybrid system is considered, where the fuel cell stack is pressurized with a turbocharger, resulting in a system with improved cost effectiveness than a microturbine-based one at small scales. In a previous work, a detailed steady-state model of the system, featuring components validated with industrial data, was developed to simulate the system and analyze its behavior in different conditions. The results obtained from this model were used to create response surfaces capable of evaluating the impact of the main operating parameters (fuel cell area, stack current density, and recuperator (REC) surface) on the performance and the profitability of the plant considering system uncertainties. In this paper, similar but extended response surfaces will be used to perform a multi-objective optimization of the system considering the capital costs of the plant and the net power produced as objectives (turbocharger is fixed in geometry). The impact of the energy market scenario on the optimal design of such a system will be investigated considering its installation in three different countries. Finally, the Pareto front produced by optimization will be used to evaluate the robustness of the top performance solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据