4.8 Article

Cx43 hemichannel microdomain signaling at the intercalated disc enhances cardiac excitability

期刊

JOURNAL OF CLINICAL INVESTIGATION
卷 131, 期 7, 页码 -

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI137752

关键词

-

资金

  1. Fund for Scientific Research Flanders
  2. Ghent University
  3. Interuniversity Attraction Poles [P7/10]
  4. NIH
  5. Fondation Leducq
  6. Ministry of Science and Higher Education of the Russian Federation [075-15-2020-800]

向作者/读者索取更多资源

Cx43 hemichannels are activated during diastolic Ca2+ release in ventricular cardiomyocytes, contributing to enhanced Ca2+ dynamics due to Ca2+ entry and coupling to release microdomains. Hemichannel opening also leads to delayed afterdepolarizations and triggered action potentials. Increased hemichannel activity is associated with electrical instability in failing human hearts compared to nonfailing donor hearts, suggesting a potentially novel mechanism of cardiac arrhythmogenesis in heart failure.
Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known about the potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging, and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels were activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mice and pigs. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc, resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs, and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability compared with nonfailing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a potentially novel, targetable mechanism of cardiac arrhythmogenesis in heart failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据