4.7 Article

A comprehensive insight into devolatilization thermo-kinetics for an agricultural residue: Towards a cleaner and sustainable energy

期刊

JOURNAL OF CLEANER PRODUCTION
卷 310, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2021.127365

关键词

Stubble burning; Bioenergy; Pyrolysis; Devolatilization kinetics; Thermodynamics; Energy conversion

向作者/读者索取更多资源

This study investigated the conversion of rice stubble feedstock to thermochemical route through kinetic and thermodynamic analysis. The feedstock showed high energy potential with 47.61% carbon content and 14.43 MJ kg-1 heating value. Kinetics analysis revealed a chain initiation and propagation mechanism, along with significant kinetic compensation effect, and a fitting percentage of 69.34% was achieved between experimental data and empirical model.
Stubble burning is a widely implemented agricultural malpractice that poses a serious environmental threat along with air pollution and global warming as the major consequences. This study aims to investigate an alternate conversion of the rice stubble feedstock to the thermochemical route by detailed kinetic and thermodynamic analysis. Initial assessment about the feedstock was made through physical and chemical characterization which indicated its energy potential with the high carbon content 47.61% along with 14.43 MJ kg-1 heating value. Subsequently, devolatilization kinetics was studied through a series of non-isothermal thermogravimetric analysis which showed the dependence on the plant cell wall component with overall conversion in active pyrolysis zone was 50.30%. Reaction pathways suggested a chain initiation and propagation mechanism associated with each constituent macromolecule. Friedman and simplified distributed activation energy methods were employed and the average apparent activation energy was estimated as 261.47 and 251.08 kJ mol-1 with corresponding pre-exponential factor as 7.85 x 1036 and 1.74 x 1021 s- 1 respectively. Kinetic compensation effect was also observed within these parameters with its constants as 0.070 mol kJ-1 s- 1 and 22.24 s-1. Master plots indicated that nuclei growth starts in the initial part of the reaction which exponentially increases to random nucleation and finally diffusion effects are dominant at the end of devolatilization. The empirical model mathematically showed an excellent correlation with the experimental data with a fitting percentage of 69.34%. Finally, thermodynamic parameters indicated an endothermic, non-spontaneous and high degree of randomness in the reaction. Altogether, the thermo-kinetic study suggested the energy feasibility of the overall process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据