4.7 Review

An overview of non-biodegradable bioplastics

期刊

JOURNAL OF CLEANER PRODUCTION
卷 294, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2021.126218

关键词

Bioplastics; Energy; Fermentation; Gasification; Gasoline; Pyrolysis

资金

  1. Mechanical Engineering Department at Allen E. Paulson College of Engineering and Computing at Georgia Southern University, Statesboro, Georgia, USA

向作者/读者索取更多资源

Bioplastics have brought flexibility to human life but also introduced challenges in waste management. Approximately half of the current bioplastic market is not biodegradable, posing a problem for governments and policymakers. The production of bioplastics usually starts from biomass and goes through various modification techniques to produce non-biodegradable bioplastics.
Bioplastics have introduced numerous flexibilities to humankind. However, bioplastics have brought newer challenges in waste management. Approximately half of the current bioplastic market is not biodegradable, and with a larger market volume, its end-of-life allocation will be problematic for the governments and policymakers. This study aims to provide an overview of the non-biodegradable bioplastics market, including their underlined challenges, typical production methods, characterization, and possible alternative waste utilization perspective. Bioplastic production usually starts from a biological source i.e., biomass and a series of modification techniques such as pretreatment, hydrolysis, and fermentation are carried out to produce bioethanol. Then, bioethanol is converted to non-biodegradable bioplastics. The major non-biodegradable bioplastics are bio-polyethylene (bio-PE), bio-polypropylene (bio-PP), bio-polyethylene-terephthalate (bio-PET), bio-polytrimethylene terephthalate (Bio-PTT), and bio-polyamide (bio-PA). In this review article, an overview of each bioplastic is presented with flow diagrams. Also, the production method of compostable bioplastics-polylactic acid (PLA) -is briefly discussed for comparison purpose. Since the chemical structure of bio-based non-biodegradable plastics is similar to the conventional fossil-based plastics, the characterization and alternative thermochemical utilization techniques of five bioplastic wastes are discussed based on the conventional plastics characterizations. Per ultimate analysis, considering high hydrogen, low oxygen, and low fixed carbon content, bio-PE and bio-PP are recommended as potential feedstocks for the catalytic pyrolysis process to produce gasoline and diesel range liquid hydrocarbons. Alternatively, bio-PET, bio-PA, and PLA are recommended as potential feedstocks for the gasification process, considering their higher oxygen content. ? 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据