4.7 Article

Study on CO2 hydrate formation characteristics with promoters for CO2 capture and cold thermal energy transportation

期刊

JOURNAL OF CLEANER PRODUCTION
卷 295, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2021.126392

关键词

CO2 hydrate; Formation promotors; CO2 capture ratio; FIB-SEM; XRD

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [2020R1A5A118153]

向作者/读者索取更多资源

Hydrate-based CO2 capture technology is considered a potential future carbon capture technology, allowing efficient storage and transportation of CO2 in hydrate form. By studying the characteristics of hydrates during formation, the CO2 capture performance and absorbent characteristics can be evaluated effectively.
Advancing in a cleaner production and environement, hydrate-based CO2 capture techniques have been spotlighted as a potential future carbon capture technology. The technique allows CO2 to be captured in the form of a hydrate which is capable of storing or transporting CO2 with higher efficiency. Furthermore, CO2 hydrates can be used as energy carriers by capturing the cold thermal energy. Thus, CO2 hydrates can enable effective transportation for both CO2 and cold thermal energy. In this study, the characteristics of CO2 hydrates in the presence of prevalent promoters are studied extensively from various perspectives. CO2 hydrates were produced in an agitating closed absorption chamber under various pressure and promoter concentration conditions with three prevalent promoters: cyclopentane, tetrahydrofuran and tetra-n-butylammonium bromide. Comparison of the promoters under various conditions was carried out by investigating the characteristics during and after hydrate formation. Additionally, the thermal behavior during hydrate formation was observed through the temperature variation to investigate the inside of the chamber during the formation process. Moreover, to understand the CO2 hydrate structures in the presence of the promoters, microscopic and spectroscopic approaches were applied using focused ion beam scanning electron microscopy and X-ray diffraction methods. The CO2 capture performance and characteristics of the CO2 hydrate absorbents were evaluated. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据