4.7 Article

Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 17, 期 5, 页码 3065-3077

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.1c00041

关键词

-

资金

  1. Early Postdoc.Mobility fellowship from the Swiss National Science Foundation
  2. DoE [DE-SC0019394]
  3. National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility [DE-AC02-05CH11231]

向作者/读者索取更多资源

The study investigates the phase equilibrium of water and different ice forms using machine learning models and density functional theory, predicting various properties and confirming the accuracy of the SCAN functional in predicting ice stability.
Machine learning models are rapidly becoming widely used to simulate complex physicochemical phenomena with ab initio accuracy. Here, we use one such model as well as direct density functional theory (DFT) calculations to investigate the phase equilibrium of water, hexagonal ice (Ih), and cubic ice (Ic), with an eye toward studying ice nucleation. The machine learning model is based on deep neural networks and has been trained on DFT data obtained using the SCAN exchange and correlation functional. We use this model to drive enhanced sampling simulations aimed at calculating a number of complex properties that are out of reach of DFT-driven simulations and then employ an appropriate reweighting procedure to compute the corresponding properties for the SCAN functional. This approach allows us to calculate the melting temperature of both ice polymorphs, the driving force for nucleation, the heat of fusion, the densities at the melting temperature, the relative stability of ices Ih and Ic, and other properties. We find a correct qualitative prediction of all properties of interest. In some cases, quantitative agreement with experiment is better than for state-of-the-art semiempirical potentials for water. Our results also show that SCAN correctly predicts that ice Ih is more stable than ice Ic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据