4.7 Article

Time-scale ordering in hydrogen- and van der Waals-bonded liquids

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 154, 期 18, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0049108

关键词

-

资金

  1. VILLUM Foundation's Matter Grant [16515]

向作者/读者索取更多资源

This study investigates the time scales of structural relaxation in two different types of liquids, revealing unique ratios of time scales but a unified ordering based on response functions. The findings suggest a general relation between the time scales of different response functions, indicating a rather generic nature of the process of structural relaxation.
The time scales of structural relaxation are investigated on the basis of five different response functions for 1,2, 6-hexanetriol, a hydrogen-bonded liquid with a minor secondary contribution, and 2,6,10,15,19,23-hexamethyl-tetracosane (squalane), a van der Waals-bonded liquid with a prominent secondary relaxation process. Time scales of structural relaxation are derived as inverse peak frequencies for each investigated response function. For 1,2,6-hexanetriol, the ratios of the time scales are temperature-independent, while a decoupling of time scales is observed for squalane in accordance with the literature. An alternative evaluation approach is made on the squalane data, extracting time scales from the terminal relaxation mode instead of the peak position, and in this case, temperature-independent time-scale ratios are also found for squalane, despite its strong secondary relaxation contribution. Interestingly, the very same ordering of response-function-specific time scales is observed for these two liquids, which is also consistent with the observation made for simple van der Waals-bonded liquids reported previously [Jakobsen et al., J. Chem. Phys. 136, 081102 (2012)]. This time-scale ordering is based on the following response functions, from fast to slow dynamics: shear modulus, bulk modulus, dielectric permittivity, longitudinal thermal expansivity coefficient, and longitudinal specific heat. These findings indicate a general relation between the time scales of different response functions and, as inter-molecular interactions apparently play a subordinate role, suggest a rather generic nature of the process of structural relaxation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据