4.7 Article

Spontaneous lipid binding to the nicotinic acetylcholine receptor in a native membrane

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 154, 期 18, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0046333

关键词

-

资金

  1. Busch Biomedical Foundation

向作者/读者索取更多资源

The study reveals that cholesterol favors concave sites while polyunsaturated fatty acids are better suited for convex sites in a complex lipid composition of neuronal membranes. Competition between different lipid species influences the distribution and affinity of lipids for specific binding sites on the nicotinic acetylcholine receptor.
The nicotinic acetylcholine receptor (nAChR) and other pentameric ligand-gated ion channels are native to neuronal membranes with an unusual lipid composition. While it is well-established that these receptors can be significantly modulated by lipids, the underlying mechanisms have been primarily studied in model membranes with few lipid species. Here, we use coarse-grained molecular dynamics simulation to probe specific binding of lipids in a complex quasi-neuronal membrane. We ran a total of 50 mu s of simulations of a single nAChR in a membrane composed of 36 species of lipids. Competition between multiple lipid species produces a complex distribution. We find that overall, cholesterol selects for concave inter-subunit sites and polyunsaturated fatty acids select for convex M4 sites, while monounsaturated and saturated lipids are unenriched in the nAChR boundary. We propose the density-threshold affinity as a metric calculated from continuous density distributions, which reduces to a standard affinity in two-state binding. We find that the density-threshold affinity for M4 weakens with chain rigidity, which suggests that flexible chains may help relax packing defects caused by the conical protein shape. For any site, PE headgroups have the strongest affinity of all phospholipid headgroups, but anionic lipids still yield moderately high affinities for the M4 sites as expected. We observe cooperative effects between anionic headgroups and saturated chains at the M4 site in the inner leaflet. We also analyze affinities for individual anionic headgroups. When combined, these insights may reconcile several apparently contradictory experiments on the role of anionic phospholipids in modulating nAChR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据